DETERMINATION OF THE PARAMETERS OF
RELAXATION KERNELS FROM THE RESULTS
OF A WAVE EXPERIMENT

N. M. Ivanov and V. P, Muzychenko UDC 539.3.5:678

It is necessary to perform the appropriate experiments over a wide range of variation of the time for a
complete description of the mechanical behavior of polymeric materials possessing pronounced viscoelastic
properties, The reaction of the material to loads whose variation in time can encompass the range from one
period per hour to tens of Megahertz and up to several months and even years for creep [1] has been dis~
cussed in similar experiments, Many papers devoted to investigations of the mechanical properties of linear
viscoelastic media have been published recently. An extensive bibliography in which the procedure and results
of these investigations are described is given in [2-7]. It is necessary for the solution of boundary-value
problems of viscoelasticity associated with the propagation of nonsteady waves to develop theoretical ~experi-
mental methods of constructing viscoelastic models corresponding to conditions which most closely approach
in duration and intensity the loads which trigger transitional processes. It is proposed to use the method of
numerical solution of the inverse problem for a nonstationary rod loaded by a short pulse of longitudinal
strain together with the traditional experimental dynamic methods of determining the parameters of visco-
elastic models [8-13]. The duration of the input signal as well as the coordinates of characteristic points on
oscillograms which have recorded a transitional process in a specific cross section of a polymeric sample rod
encompassing several reflected (for example, up to ten) waves preferably not interacting with each other can
serve as the initial data for such a problem, The proposed method is an important modification of the travel-
ing-wave method [1] but is most similar in its experimental implementation to the '"impact wave' method
(IWM) applied [14] in the radiography of structural elements, The appropriate upper limit to the frequencies
of the method lies above 10-20 kHz, the maximum possible for the free vibration method or the resonance
method [11-137 bounded by the highest harmonic, which can be excited in a sample with the help of the small-
est additional mass due to excitation of a ''standing' wave [1], and lower than the ultrasonic sounding meth-
ods, of which the extremely low levels of the acting load intensities, which do not correspond to the actual
ones, are characteristic. In contrast to the resonance method, the proposed method is freed of the presence
of an electromechanical moment of the forces from interaction of the **exciting' coil with a magnetic field,
which leads to large errors [15]. The method has heen described in [16] in the formation outlined below, but
it was oriented only to finding the parameters of the Rabotnov kernels [17] from only a single signal, which
reduced the accuracy of the method.

The graphical time dependence of the longitudinal strain recorded by a measuring system for a freely
suspended rod made out of polymethyl methacralate with a length of 0.985 m and a thickness of 0.0095 m when
bullets from a pneumatic rifler are shot into the end is given in Fig. 1.

It is proposed that the dependence of the longitudinal displacements u, strains e, and stresses ¢ on the
time t and the Lagrangian coordinate x is described with zero boundary conditions by the system of equations:

& = Buldx, doldz = potuldt; (1
+ R

%:é-S‘T(t—m)a(xim)dv, (2)
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where p is the density of the material; E;, instantaneous modulus of elasticity; and T(t), a function of the
stress relaxation rate. In specifying the boundary conditions we shall make use of the following approximation:

“g(Ly t) =05 (3)
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where 27 is the duration of the input pulse (Fig. 2, solid curve) and ¢, is the maximum value of the strain,

Applying the operational method, one can represent the solution of the problem (1)-(4) similarly to [18]
in the form of a superposition of direct and reverse waves. We obtain the Laplace transformation for the
strain in cross section x in the form
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where [ is the number of reflections of the wave from the free end of the rod being discussed;
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The problem simplifies significantly if the duration of the input pulse is appreciably less than the time
interval L/ C, during which the wave traverses the length of the rod. In this case restricting ourselves to a
discussion only of direct waves recorded in the upper half plane of Fig. 1, we obtain instead of (5)
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figuring the time from the instant x/C,. We shall assume the first pulse recorded by the measuring system in
cross section x to be the input signal. Using the well-known retardation theorem, we find

gy (.’tl\ t)=§1W(thlt—th)h(t—tk),; (8)

where tig = 2Lk/C, and h(t) is the Heaviside unit function.

Thus, calculation of the strains in a model problem reduces to inversion of the image (6). It is proposed
for the solution of this problem to use an economic algorithm constructed with the help of an approximation of
the original f(t) by a trigonometric system [19]:

n ° .
F) = ful(t) =.2) Cnsin[(2m — 1) arccos &—9], ‘ 9)
m=1 . ’ .
where ¢ > 0 is an arbitrary parameter. The coefficients Cp, are determined from the linear system

m .
‘ , g ,
' 2 dmici_z ?Uf (pm)l m=1,2..,mn, (10)
i=1 N

where pm = (2m — 1)o and -f-(p) is the specified image. The elements of the triangular matrix Il ayill are
constant quantities; their values are given, for example, in [19],
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One can find the solution of the system (10) by taking account of the fact that g ;) = 1 with the help of
the recurrence relationships:

L - L < .
Ci=—0f(p), Cm= 0] () = JamCt, m=2,3,. 0., n.
i=1
It is necessary for the computer calculation of a single value of fn to perform (n%+ 3n)/ 2 + 1 multipli-
cation operations, n®—n + 1 addition— subtraction operations, and n calculations of the functions f(pm) and
sin[(2k — 1) arccos e'gt]. If the time expended by the computer on the execution of each of the indicated oper-

ations is denoted by ty, t,, t3, and t, respectively, then the time expenditure to calculate a single value of fn
is:

D O L

The proposed modification permits shortening this time to the minimum value (t; + t, + t3)n,

Let us represent the solution of the system (10) in the general form
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where Amij are elements of the matrix ilay,; II"!. Substituting the coefficients into (9) and setting ¢ = z/t (with
z = const), we obtain
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where # = arccos e”% is a constant quantity. Also the coefficients
n
1 4" . .
Om (8) = -~ 2 Ay sin{(2i — 1) 0],

2m —1 4
T i=m

whose values can be determined in advance and introduced into the computer in the form of a table, are con-
stant when n and z are specified; Thus, a dependence to calculate an approximate value of the original fj(t)
from a specified operator image F(p) = pf (p) with the help of the simple formula

T

fal®) = mE o (G)F(Pm)

=1

has been obtained,

The values of the coefficients 6}%”/4) are tabulated in Table 1. The recommended values of the para-
meters n = 16 and z = (1/2) ln 2 are determined as a result of computational experiments with control exam-
ples. The numerical inversion of the image (7) was discussed as one of them, The accuracy of the approxima-
tion to the original (4) is illustrated in Fig. 2, in which the experimental points and the approximation are

simultaneously shows by the filled circles, and the piecewise-parabolic approximation (4) is shown as a solid
curve,

The values of the maximum &y of the function (8) as well as the time intervals Tk (withk =1, 2,,..1)
in which it is repeated are determined from the results of the numerical inversion of the image (6), Similar
data eg and Tf{k are obtained from the experiment (see Fig. 1)}, The values of g,k and Ty can be treated as

TABLE 1
R: 15', N-m™
" () n e ]
¢ : 63
’ 2T
T ) - 9 | 0,540885164359385- 109 LA B S
2 | —0,960337403900965- 101 10 | —0,118170226784452- 100 5
3| 0,968020103132123.10% 11 | 0,184242612102173-10 5
4 | —0,338807036096242-10% 12 | —0,203553615850318-10%0 ' - NS
5| 0,592489764710707- 408 13 |  0,155639872641486. 1010 4L 2°Rg?
6 | —0,606984127342018-107 . | 14 | —0,783211919492481-10° Gt @ ° 1 10t sec
7| 0,397567629286954.10° 15 |  0,233343137393532-40°
8| —0,175666085691838-10° | 16 | —0,311841059189513-10° Fig. 3
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functions dependent on the parameters «y ag ..., N of the relaxation kernel T from Eq. (3) as well as on
the parameter G, = V E;/p.

Using the least squares method, we shall construct the normalized mean~-square deviation of the theo-
retical and experimental maximum points:

__'_ *12 b . C 12
‘§(ory, %y, ..y O,y 0)_2[ 'he sk]+[(1¢a—% 270] (11)

) k=1 0

Thus calculation of the parameters of the relaxation kernel from the results of the wave experiment re-~
duces to finding the minimum point of the function (11), which is dependent on N + 1 variables, This mathe—
matical problem evidently has a unique solution but it does not pay to forget that the quan‘utles ik, ak, Tk T)}';
are determined in practice with some relative errors whose values are denoted by S, /33, Br, B¥, respec-
tively. It follows from this that when the condition

S (o i -y, o) < LB+ B2 + (Bt B2 (az)

is satisfied, there is no sense in performing a further refinement of the parameters w, @, . ,ans Cp Lee.,
the inverse problem loses the uniqueness of a solution.

Condition (12) can serve as a criterion of whether or not a selected kernel is suitable for the descrip-
tion of dynamic processes with respect to a specific material, If with a given accuracy of the measurements
and calculation the condition (12) is not satisfied at the minimum point of the function (11), one should proceed
to consideration of a more complicated model.

The proposed method has been tested on examples of the calculation of the parameters of some visco-
elastic models corresponding to polymethyl methacralate with a density of 1180 kg/m?, The possibility of ap-
plying in this case the model of a rectangular spectrum [10] (model 1) with

. .2 L In +——
1— : — 1— 4
r=imn (EoE), T tna
- tm s . _Oi_ —1-
¢ . lnw> lnp+7
% %y
Rzhanitsyn's kernel [20] (model 2) with
W 1=y —a,t T 1—oa,
PP YO )
TO=g )( ) %o, (p)‘ o)

and Rabotnov's kernel [17] (model 3) with
T (p) = (t — /(L + (2P)")

has been investigated, The values L = 0,985 m, T = 25 usec, T"I‘ = T’g = T’g = T’Z = 950 ysec, €1/¢, = 0.45,

e,/ €)= 0,25, €3/¢e)=0.18, and g4/ e, = 0,15 (see Fig, 1) were used as the initial data. As a result of the cal-
culation for model 1 the parameter values o, = 107 sec and a5 = 10° sec were obtained; for model 2— @, = 1
sec and a3 = 0.1; and for model 3 —q, = 107 sec and @3 = 0,15. The values of the remaining parameters for
all three models turned out to be practically identical: C, = 2300 m/sec and «, = 0.6. The values of the func-
tion (11) at the minimum point also proved to be similar,

Plots 1-3 of the stress relaxation function

‘ f
R_(t)=(1-'-'—5'T(y)dy)Eo,; (13)
]

plotted on the basis of the results obtained for models 1~3, respectively, and also from the data of [9], in
which similar parameters of model 2 were determined from static experiments (curve 4), are given in Fig, 3.
One can conclude from the arrangement of the curves that the values of the function (13) corresponding to the
three relaxation kernels are in satisfactory agreement with each other for the parameter values indicated
above and do not contradict the literature data. Moreover, calculations using model 2 show that the relaxation
kernel parameters found by the proposed procedure provide more accurate agreement in the solution of a num~
ber of dynamic problems between the results of theory and experiment than do the analogous parameters given
in[9].

One should note that the implementation of the method in question requires large expenditures both in the
laboriousness of setting up the program for the computer and in machine time for the calculations (the calcula-
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tion of four parameters of one model takes 15 sec on an ES-1050 computer). Notwithstanding this, there are
definite advantages over the traditional methods of determining the kernel parameters,

The basic experiment of the proposed method is essentially of a nonsteady wave nature; during an analy-
sis by the proposed procedure one can exclude the first burst which appears on the expanded picture of the
strains followed by the first traverse of the length of the sample rod when the distortions due to three-dimen-
sional effects, which occur in the impact region at the end, are still prominent enough, which increases the ac-
curacy of the data obtained, for example, in comparison with [16]. One should also note that the experimental
provision necessary for implementation of the method theoretically permits, by varying the length and thick-
ness of the sample rods and the intensity and duration of the stress pulses introduced in them due to a de-
crease in the mass and flight velocity of the impacting objects, approaching most closely with the basic experi-
ment for the loads which are involved in it those values for which it is necessary to do the calculations of spe-
cific structures subjected to impact—explosive actions. In addition the method, by encompassing the time
range of appearance of the relaxation properties from approximately 200 ysec to 20 msec and even higher,
which have been covered earlier by other methods with large errors or on the basis of analogies [7], permits
finding along with the other nonwave methods, including static ones, the parameters of the kernels of the re-
laxation relations which most adequately describe the physicomechanical properties of rigid polymers by ap-
plying a complex analysis [21] of the results of a number of experiments differing in their nature by virtue of
mutually supplementary data.

Thus, a new experimental method of determining the constants of Boltzmann— Volterra hereditary rela-
tionships based on a wave experiment with a rod has been proposed. The authors are grateful to V., N. Grivkov
and V. I, Shlyakhov as well as to A. M. Kozlovtsev for useful discussions.
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DYNAMICS OF THE DEFORMATION OF A
SPHERICAL PORE IN A PLASTIC MATERIAL

A. Vv, Attetkov, V. V. Selivanov, UDC 662,215,5+539,374.1
and V. S. Solov'ev

Localized high-temperature regions (''hot spots'') exert a decisive effect on the stimulation of chemical
decomposition in high-density heterogeneous explosives, It follows from the general laws of the dynamics of
deformation of porous media that their deformation characteristics are determined by the competition of two
distortion mechanisms: the production of cracks (or slip bands), and pore deformation (collapse) [1]. Conse-
quently, the formation of localized hot spots during shock triggering of heterogeneous explosives may involve
pore deformation, shear fracture, and the slip ratio of the particles of the explosive. The present article is
devoted to a consideration of the general laws of pore deformation in a plastic material, and the heating of its
surface during its collapse. The fundamental equation of a porous material which is being compressed was
proposed in [2]. A porous material was regarded as an ideal homogeneous continuum with an additional kine-
matic variable «, defined as the ratio of the specific volume of the porous material to the specific volume of
the matrix material. A similar approach was used in [3] in investigating the deformation of granular materi-
als. This permits the treatment of the deformation of a porous material within the framework of a continuous
medium model. Theoretical papers {4, 5] have been devoted to a description of the behavior of the parameter
o . The problem reduces to the consideration of the collapse of a hollow sphere under the action of pressure
applied to the outer surface, where the ratio of the inside and outside radii determines the porosity of the
given material, The results obtained showed that the compressibility of the material and the shear modulus
G determining the elastic and elastic—plastic phases of the pore collapse do not have a significant effect, A
change of porosity occurs when all the material goes over into a state of plastic flow. Thus, for load intensi~-
ties an order of magnitude larger than the yield strength Y of the material, it is accurate enough to employ a
rigid-plastic model of the medium.

Let us consider the deformation of a pore in a plastic material under the action of a pressure p uni-
formly distributed over the outer surface. Let o, and a be, respectively, the initial and present values of the
pore radius, b; and b the initial and present values of the radius of the sphere. We characterize the initial
porosity m, of the material by the ratio of the specific volume of the pores to the volume of the continuous
material, Then ‘

my = (ag/bo)s. (])
We assume that the material is homogeneous, isotropic, and incompressible, with a density p, and that
it satisfies the Mises—Hencky or the Tresca—St. Venant yield condition with a constant yield strength Y.

Using the assumption of the incompressibility of the material (p = const), we determine the integral of
the equation of continuity
dp/dt + (pv)/or + 2pv/r =0-
in the form
v = alalr)? 2)
where r is an Eulerian coordinate; v, radial velocity; and & = da/dt, velocity of the pore boundary.

Substituting the last éxpression and the derivatives 8v/8t and 8v/dr into Euler's equation for the case of
central symmetry
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