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It is neces sa ry  to pe r fo rm the appropriate experiments over a wide range of variat ion of the time for a 
complete descript ion of the mechanical behavior of polymeric  mater ia ls  possess ing pronounced viscoelast ic  
propert ies .  The reaction of the mater ia l  to loads whose variat ion in time can encompass the range f rom one 
period per  hour to tens of Megahertz and up to several  months and even years  for creep i l l  has been dis-  
cussed in s imi lar  experiments.  Many papers devoted to investigations of the mechanical  proper t ies  of l inear  
viscoelast ic  media have been published recently.  An extensive bibliography in which the procedure  and results  
of these investigations are  described is given in [2-7].  It is necessa ry  for the solution of boundary-value 
problems of viscoelast ic i ty  associated with the propagation of nonsteady waves to develop t h e o r e t i c a l - e x p e r i -  
mental methods of constructing viscoelast ic  models corresponding to conditions which most  closely approach 
in duration and intensity the loads which t r igger  transit ional processes .  It is proposed to use the method of 
numerical  solution of the inverse problem for a nonstat ionary rod loaded by a short  pulse of longitudinal 
s t rain together with the traditional experimental  dynamic methods of determining the pa ramete r s  of v isco-  
elastic models [8-13].  The duration of the input signal as well as the coordinates of charac te r i s t i c  points on 
osci l lograms which have recorded a transit ional p rocess  in a specific c ross  section of a polymeric  sample rod 
encompassing several  reflected (for example, up to ten) waves preferably  not interacting with each other can 
serve as the initial data for such a problem. The proposed method is an important  modification of the t ravel -  
ing-wave method [1] but is most  s imi lar  in its experimental  implementation to the " impac t  wave" method 
(IWM) applied [ 14] in the radiography of s t ruc tura l  elements.  The appropriate  upper l imit  to the frequencies 
of the method lies above 10-20 kHz, the maximum possible for  the free vibration method or  the resonance 
method [11-13] bounded by the highest harmonic,  which can be excited in a sample with the help of the smal l -  
est  additional mass  due to excitation of a " s tand ing"  wave [ 1], and lower than the ul trasonic sounding meth-  
ods, of which the ex t remely  low levels of the acting load intensities, which do not correspond to the actual 
ones, are  charac ter is t ic .  In contras t  to the resonance method, the proposed method is freed of the presence 
of an electromeehanieal  moment of the forces  f rom interaction of the "exc i t ing"  coil with a magnetic field, 
which leads to large e r r o r s  [15]. The method has been described in [16] in the formation outlined below, but 
it was oriented only to finding the pa ramete r s  of the Rabotnov kernels [ 17] f rom only a single signal, which 
reduced the accuracy  of the method. 

The graphical  t ime dependence of the longitudinal s t ra in  recorded by a measur ing sys tem for a freely 
suspended rod made out of polymethyl methaeralate  with a length of 0.985 m and a thickness of 0.0095 m when 
bullets f rom a pneumatic r i f ler  are  shot into the end is given in Fig. 1. 

It is proposed that the dependence of the longitudinal displacements  u, s t ra ins  e, and s t r e s ses  a on the 
time t and the Lagrangian coordinate x is described with zero boundary conditions by the sys tem of equations: 

s = O~lOx~ O~lOx = pO2ulOt~; (1) 

, "~oi~ = S ' ~: T (t --~) s (x, ~;) d~ s ( 2 ) 
0 

where 0 is the density of the material ;  E 0, instantaneous modulus of elasticity; and T ( t ) ,  a function of the 
s t ress  relaxation rate. In specifying the boundary conditions we shall make use of the following approximation: 

~(L, t) = 0; (3) 

Daugavpils. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 121-127, 
J anua ry -Feb rua ry ,  1983. Original ar t ic le  submitted December  15, 1981. 
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2 (the)' for 0 ~< t/, < 1/2,~ 

, ( O , , ) = ] i ' 2 ( t / ~ - - i ) '  for + < t / ~ < 3 / 2 , ,  

> 0,: . 

w h e r e  2T is the  d u r a t i o n  of the  input  p u l s e  (F ig .  2, so l id  c u r v e )  and e 0 i s  the m a x i m u m  va lue  of  the s t r a i n .  

A p p l y i n g  the o p e r a t i o n a l  me thod ,  one can  r e p r e s e n t  the s o l u t i o n  of  the p r o b l e m  ( 1 ) - ( 4 )  s i m i l a r l y  to [18] 
in the f o r m  of  a s u p e r p o s i t i o n  of  d i r e c t  and r e v e r s e  waves .  We ob ta in  the  L a p l a c e  t r a n s f o r m a t i o n  fo r  the  
s t r a i n  in c r o s s  s e c t i o n  x in the  f o r m  

- l 

w h e r e  l i s  the n u m b e r  of r e f l e c t i o n s  of  the wave f r o m  the f r e e  end of the rod  be ing  d i s c u s s e d ;  

(tk,. p ) =  ~(0,  p) e a - ~ ( ~ ) + V ~ . . ,  (6) 

( ) ~(0, p) ' 4 ~t �9 = p-~z ( 1 - -  e-~') t - -  e-~- ~ (7) 
8 0 

�9 2L(k- - i ) - - ' x  , / r - -  
tkl 2Lk --}- x tk~. -: Co .'~ C O ~-- 

= O ' ~ e  ,~: V ~ - .  

The p r o b l e m  s i m p l i f i e s  s i g n i f i c a n t l y  if the d u r a t i o n  of  the input  p u l s e  is a p p r e c i a b l y  l e s s  than the t i m e  
i n t e r v a l  L / C  0 d u r i n g  which the wave t r a v e r s e s  the length  of the rod.  In th is  c a s e  r e s t r i c t i n g  o u r s e l v e s  to a 
d i s c u s s i o n  only of  d i r e c t  waves  r e c o r d e d  in the u p p e r  ha l f  p l ane  of  F ig .  1, we obta in  i n s t e a d  of (5) 

p) = 9 
m 

f i g u r i n g  the t i m e  f r o m  the i n s t a n t  x / C  0 . We s h a l l  a s s u m e  the f i r s t  p u l s e  r e c o r d e d  by  the m e a s u r i n g  s y s t e m  in 
c r o s s  s e c t i o n  x to be the input  s igna l .  Us ing  the w e l l - k n o w n  r e t a r d a t i o n  t h e o r e m ,  we find 

e 1 (x, t) = ~ W (th, t - -  th) h (t - -  th),: (8) 
h = l  

w h e r e  tk = 2 L k / C  0 and h(t) is  the H e a v i s i d e  uni t  funct ion .  

Thus ,  c a l c u l a t i o n  of the s t r a i n s  in a m o d e l  p r o b l e m  r e d u c e s  to i n v e r s i o n  of the i m a g e  (6) .  I t  is  p r o p o s e d  
fo r  the so lu t i on  of th i s  p r o b l e m  to u se  an  e c o n o m i c  a l g o r i t h m  c o n s t r u c t e d  with the help of  an a p p r o x i m a t i o n  of 
the o r i g i n a l  f ( t )  by  a t r i g o n o m e t r i c  s y s t e m  [ 19 ] : 

n 
] (t) ~ ]~ (t) ---- . ~  C,, sin [(2m - -  t) arccos e:-~t] (9) 

w h e r e  (~ > 0 is  an a r b i t r a r y  p a r a m e t e r .  The c o e f f i c i e n t s  C m a r e  d e t e r m i n e d  f r o m  the l i n e a r  s y s t e m  
I n  

--E--a/(p~,), m = 1, 2 , . . . ,  n, (10)  

w h e r e  Pm = ( 2 m -  1)~ and f (p) i s  the s p e c i f i e d  i m a g e .  The e l e m e n t s  of  the t r i a n g u l a r  m a t r i x  if a m i  fl a r e  
c o n s t a n t  quan t i t i e s ;  t h e i r  v a l u e s  a r e  g iven ,  fo r  e x a m p l e ,  in [19] .  
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One can  find the so lu t ion  of the s y s t e m  (10) by taking account  of the fact  that  a m n =  1 with the help of 

the r e c u r r e n c e  r e l a t i o n s h i p s :  
m 

C1 == ~ f  (p) ,  Cm = - -  ~]  (pro) - a ,~C~,  m = 2, 3, . n. 

It i s  n e c e s s a r y  for  the compu te r  ca l cu l a t i on  of a s ing le  va lue  of f n  to p e r f o r m  (n 2 + 3 n ) / 2  + 1 m u l t i p l i -  
ca t ion  ope ra t ions ,  n 2 - n + I a d d i t i o n - s u b t r a c t i o n  ope ra t i ons ,  and n ca l cu l a t i ons  of the funct ions  f (Pm) and 
s i n [ ( 2 k -  1) a r c c o s  e - a t ] .  If the t ime  expended by the c o m p u t e r  on the execu t ion  of each of the indica ted  o p e r -  
a t ions  is denoted by t 1, t2, t 3, and t4, r e spec t i ve l y ,  then the t ime  expend i tu re  to ca lcu la te  a s ing le  va lue  of ~n 
i s :  

The p roposed  modi f i ca t ion  p e r m i t s  sho r t en ing  this t ime  to the m i n i m u m  value  (t 1 + t 2 + t3)n. 

Let  us r e p r e s e n t  the so lu t ion  of the s y s t e m  (10) in the g e n e r a l  f o r m  

~a 4 i - 1 ~ 4 ~ 
C~ = A ~  - E  ~] (P~) = -~  Z A,~i 27=---t P(] (Pd~ ra = 1, 2, . . . , .  n, 

i : 1  /:i 

where Ami  a re  e l e m e n t s  of the m a t r i x  II a m i  II "1. Subs t i tu t ing  the coef f ic ien ts  into (9) and se t t ing  a = z/ t  (with 

z = cons t ) ,  we obtain 
n n ?n �9 

~ 4~ N A [(2i --  i) 0], = 4 ~ - i "~ Prn] (Pro) ~ ~msin t sin [(2m --  t) O] ~ A m ~ p i f ( p l ) = ~ z ~ u  fn (t) ~ m = l  i = i  m = i  i = m  

where  0 = a r c c o s  e - z  is a cons t an t  quant i ty .  Also  the coef f ic ien ts  

5~ (0) = t ~ g 2ra -- i ~'~ Ai~ sin [(2i - -  1) 0],~ 

whose va lues  can be d e t e r m i n e d  in advance  and in t roduced  into the c o m p u t e r  in the f o r m  of a table ,  a r e  con-  
s t an t  when n and z a r e  specif ied_ Thus ,  a dependence  to ca l cu la t e  an app rox ima te  value of the o r i g i n a l  fn( t )  

f r o m  a spec i f ied  o p e r a t o r  image  F (p) = pf  (p) with the help of the s imp le  f o r m u l a  

~n 

l~ (t) = E ~ ,  (0) ~ (p,~) 
~ 1  

has been  obtained.  

The va lues  of the coef f ic ien ts  6 ~ ( ~ r / 4 )  a r e  tabula ted  in Tab le  1. The r e c o m m e n d e d  va lues  of the p a r a -  
m e t e r s  n = 16 and z = (1/2) In 2 a re  d e t e r m i n e d  as a r e s u l t  of computa t iona l  e x p e r i m e n t s  with con t ro l  e x a m -  
p les .  The n u m e r i c a l  i n v e r s i o n  of the image  (7) was d i s c u s s e d  as one of them.  The a c c u r a c y  of the a p p r o x i m a -  
t ion to the o r ig ina l  (4) is i l l u s t r a t e d  in Fig.  2, in which the e x p e r i m e n t a l  poin ts  and the a pp r ox i ma t i on  a r e  
s i m u l t a n e o u s l y  shows by the f i l led c i r c l e s ,  and the p i e c e w i s e - p a r a b o l i c  a p p r o x i m a t i o n  (4) is  shown as a sol id  

c u r v e ,  

The va lues  of the m a x i m u m  etk of the func t ion  (8) as well  as the t ime  i n t e r v a l s  T k (with k = 1, 2 . . . .  l ) 
in  which it is r epea ted  a r e  d e t e r m i n e d  f rom the r e s u l t s  of the n u m e r i c a l  i n v e r s i o n  of the image  (6). S i m i l a r  

* and * data  e k 7 k a r e  obta ined  f r o m  the e x p e r i m e n t  (see Fig. 1). The va lues  of e~k and S k can be t r ea t ed  as 

TABLE 1 

t 

2 
3 
4 
5 
6 

7 
8 

. 0  
--0,960357403900965.101 

0,968020103132123.10 a 
--0,338807036096242.10~ 

0,592489764710707.)0 ~ 
--0,606984127342018.10T 

0,397567629286954.10~ 
--0,175666085691838.10 ~ 

9 

t0 
1i 
12 

t 6  

t3 
t4 
t5 
t6 

0,540885164359385.i0~ 
--0,tt8170226784452-t0t~ 

0,i842426i2102173.101~ 
--0,2035536!58403t8.t01~ 

0,t5563987264t486.i0 l~ 
--0,78321t9i9492i8i-i09 

0,233343137393532.t0s 
~0,3it841059t89513-t08 

R. ~0', N -  m-2 

k,d 
d 

t6 ~ ~57 ~5 s 16 ~ 10 -I t, see 

Fig. 3 
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func t ions  dependen t  on the p a r a m e t e r s  ~ t, a 2 , . . .  , a N  of the r e l a x a t i o n  k e r n e l  T f r o m  Eq. (3) as well  as on 

the p a r a m e t e r  C O = ~/E0/0. 

Us ing  the l e a s t  s q u a r e s  method,  we shal l  c o n s t r u c t  the n o r m a l i z e d  m e a n - s q u a r e  dev ia t ion  of the theo-  

r e t i c a l  and e x p e r i m e n t a l  m a x i m u m  poin ts :  

S ( ~ , , ~ ,  ...:, ~ , ,  Co) = ,---4---0 J -rL~ ~ -  ~J~-J  " (11) 
k ~ X  " 

Thus calculation of the parameters of the relaxation kernel from the results of the wave experiment re- 
duces to finding the minimum point of the function (11), which is dependent on N + I variables. This mathe- 
matical problem evidently has a unique solution but it does not pay to forget that the quantities elk, e~, ~-k, T~ 
are determined in practice with some relative errors whose values are denoted by fie, fie, fl~-, fi*, respec- 
tively. It follows from this that when the condition 

' "' * 2 s (~ ~,~,..., ~ ~o) < [(~. + ~ )  +t:~, + ~;)~1 z (1~) 

i s  sa t i s f i ed ,  there  is no s e n s e  in p e r f o r m i n g  a f u r t h e r  r e f i n e m e n t  of the p a r a m e t e r s  ~ 1, a2 . . . . .  a N ,  Co, i .e . ,  
the i n v e r s e  p r o b l e m  loses  the u n i q u e n e s s  of a so lu t ion .  

Condi t ion  (12) can s e r v e  as  a c r i t e r i o n  of whether  or  not a se lec ted  k e r n e l  is su i t ab le  for  the d e s c r i p -  
t ion of dynamic  p r o c e s s e s  with r e s p e c t  to a spec i f i c  m a t e r i a l .  If with a g iven  a c c u r a c y  of the m e a s u r e m e n t s  
and ca l cu l a t i on  the condi t ion  (12) is  not s a t i s f i ed  a t  the m i n i m u m  point  of the funct ion  (11), one should p roceed  
to c o n s i d e r a t i o n  of a m o r e  compl i ca t ed  model .  

The p roposed  method has been  tes ted  on example s  of the c a l c u l a t i on  of the p a r a m e t e r s  of some  v i s c o -  
e l a s t i c  mode l s  c o r r e s p o n d i n g  to po lymethy l  m e t h a c r a l a t e  with a de ns i t y  of 1180 k g / m  3. The p o s s i b i l i t y  of ap -  
p ly ing  in  this case  the model  of a r e c t a n g u l a r  s p e c t r u m  [10] (model  1) with 

t In a--~ a 
{Z 2 

R z h a n i t s y n ' s  k e r n e l  [20] (model  2) with 

t ct 1 l n p +  t '~ 

,o:i 

' i --tz 1 
T (i) = !~ ~,' (,~2t)'%-%'~, "~ (p) %- r r  qza) (l + ~,,,,:,) 

and Rabo tnov ' s  k e r n e l  [17] (model  3) with 

has been  inves t iga ted .  The va lues  L = 0.985 m, T = 2 5 u s e e ,  I"* = ~-~ =1"* = z~ = 9 5 0 ~ s e c ,  E1/G 0 = 0.45, 
e 2 / a  0 : 0.25, e 3 /% = 0.18, and 54/e0 = 0.15 (see Fig.  1) were  used as the i n i t i a l  data.  As a r e s u l t  of the ca l -  

cu la t ion  for  model  1 the p a r a m e t e r  va lues  a 2 = 10 -9 see and o~ 3 : 103 see were  obtained;  for  model  2 -  a2  = 1 
see  and a 3 : 0.1; and for  model  3 - a  2 = 10-3 sec and ~ 3 = 0.15. The va lues  of the r e m a i n i n g  p a r a m e t e r s  for  
a l l  t h ree  mode l s  t u rned  out to be p r a c t i c a l l y  iden t i ca l :  C o = 2300 m / s e e  and a 1 = 0.6. The va lues  of the func -  
t ion (11) at  the m i n i m u m  point  a l so  p roved  to be s i m i l a r .  

P lo t s  1-3 of the s t r e s s  r e l a x a t i o n  funct ion  

R (t) = T (y) dy Eo,: (13) 

plotted on the b a s i s  of the r e s u l t s  obtained for  mode ls  1-3, r e s p e c t i v e l y ,  and a lso  f r o m  the data of [9], in 
which s i m i l a r  p a r a m e t e r s  of model  2 were  d e t e r m i n e d  f r o m  s ta t ic  e x p e r i m e n t s  (curve  4),  a r e  g iven  in Fig.  3. 
One can  conclude f r o m  the a r r a n g e m e n t  of the c u r v e s  that  the va lues  of the funct ion  (13) c o r r e s p o n d i n g  to the 
th ree  r e l a x a t i o n  k e r n e l s  a r e  in s a t i s f a c t o r y  a g r e e m e n t  with each o the r  for  the p a r a m e t e r  va lues  ind ica ted  
above and do not  c o n t r a d i c t  the l i t e r a t u r e  data.  Moreove r ,  c a l cu l a t i ons  us ing  model  2 show that  the r e l a x a t i o n  
k e r n e l  p a r a m e t e r s  found by the p roposed  p r o c e d u r e  provide  m o r e  a c c u r a t e  a g r e e m e n t  in the so lu t ion  of a n u m -  
b e r  of dynamic  p r o b l e m s  be tween  the r e s u l t s  of t heo ry  and e x p e r i m e n t  than do the ana logous  p a r a m e t e r s  g iven 
in [91. 

One should note that  the i m p l e m e n t a t i o n  of the method in ques t ion  recmi res  l a r ge  expend i tu r e s  both in the 
l a b o r i o u s n e s s  of se t t ing  up the p r o g r a m  for  the c o m p u t e r  and in  m a c h i n e  t ime  for  the ca l cu la t ions  (the c a l c u l a -  
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tion of four parameters  of one model takes 15 see on an ES-1050 computer) .  Notwithstanding this, there are  
definite advantages over the traditional methods of determining the kernel pa ramete r s .  

The basic experiment of the proposed method is essential ly of a nonsteady wave nature; during an analy- 
sis by the proposed procedure one can exclude the f i rs t  burs t  which appears  on the expanded picture of the 
strains followed by the f i rs t  t r averse  of the length of the sample rod when the distort ions due to three-d imen-  
sional effects, which occur  in the impact  region at the end, are  still prominent enough, which increases  the ac-  
curacy of the data obtained, for example, in comparison with [16]. One should also note that the experimental  
provision necessa ry  for implementation of the method theoret ical ly permits ,  by varying the length and thick- 
ness of the sample rods and the intensity and duration of the s t ress  pulses introduced in them due to a de- 
c rease  in the mass  and flight velocity of the impaeting objects, approaching most  closely with the basic experi-  
ment for the loads which are  involved in it those values for which it is neces sa ry  to do the calculations of spe- 
cific s t ructures  subjected to impac t -exp los ive  actions. In addition the method, by encompassing the time 
range of appearance of the relaxation propert ies  f rom approximately 200 usec  to 20 msec and even higher, 
which have been covered ea r l i e r  by other methods with large e r r o r s  or  on the basis  of analogies [7], permits  
finding along with the other nonwave methods, including static ones, the pa ramete r s  of the kernels  of the r e -  
laxation relations which most  adequately descr ibe the physicomechanical  proper t ies  of rigid polymers  by ap- 
plying a complex analysis [ 21 ] of the results  of a number of experiments differing in their  nature by virtue of 
mutually supplementary data. 

Thus, a new experimental  method of determining the constants of B o l t z m a n n - V o l t e r r a  heredi tary  re la -  
tionships based on a wave experiment with a rod has been proposed. The authors are  grateful to V. N. Grivkov 
and V. I. Shlyakhov as well as to A. M. Kozlovtsev for useful discussions.  
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DYNAMICS OF THE DEFORMATION OF A 

SPHERICAL PORE IN A PLASTIC MATERIAL 
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Localized h igh- tempera ture  regions ("hot  spo t s" )  exert  a decisive effect on the stimulation of chemical  
decomposit ion in high-densi ty heterogeneous explosives. It follows from the general  laws of the dynamics of 
deformation of porous media that their  deformation charac te r i s t i c s  are  determined by the competition of two 
distort ion mechanisms:  the production of c racks  (or slip bands),  and pore deformation (collapse) [1]. Conse- 
quently, the formation of localized hot spots during shock tr iggering of heterogeneous explosives may involve 
pore deformation, shear  f racture ,  and the slip rat io of the par t ic les  of the explosive. The present  ar t ic le  is 
devoted to a considerat ion of the general  laws of pore deformation in a plastic material ,  and the heating of its 
surface during its collapse. The fundamental equation of a porous mater ia l  which is being compressed  was 
proposed in [2]. A porous mater ia l  was regarded as an ideal homogeneous continuum with an additional kine- 
matic variable o~, defined as the ratio of the specific volume of the porous mater ia l  to the specific volume of 
the matr ix material .  A s imi la r  approach was used in [3] in investigating the deformation of granular  mater i -  
als. This permi ts  the t rea tment  of the deformation of a porous mater ia l  within the f ramework of a continuous 
medium model. Theoret ical  papers  [4, 5] have been devoted to a descr ipt ion of the behavior of the pa rame te r  
~. The problem reduces to the considerat ion of the collapse of a hollow sphere under the action of p ressu re  
applied to the outer surface,  where the ratio of the inside and outside radii determines  the poros i ty  of the 
given mater ia l .  The resul ts  obtained showed that the compress ib i l i ty  of the mater ia l  and the shear  modulus 
G determining the elastic and e l a s t i c - p l a s t i c  phases of the pore collapse do not have a significant effect. A 
change of poros i ty  occurs  when all the mater ia l  goes over  into a state of plastic flow. Thus, for load intensi- 
ties an o rde r  of magnitude l a rge r  than the yield strength Y of the material ,  it is accurate  enough to employ a 
r ig id-plas t ic  model of the medium. 

Let us consider  the deformation of a pore in a plast ic mater ia l  under the action of a p ressu re  p uni- 
formly distributed over  the outer surface.  Let  a0 and a be, respect ively,  the initial and present  values of the 
pore radius,  b 0 and b the initial and present  values of the radius of the sphere. We charac ter ize  the initial 
poros i ty  m 0 of the mater ia l  by the ratio of the specific volume of the pores  to the volume of the continuous 
material .  Then 

mo ~ (ao/bo) ~. ( :I ) 

We assume that the mater ia l  is homogeneous, isotropie, and incompressible ,  with a density o, and that 
it sat isf ies the M i s e s - H e n c k y  or  the T r e s c a - S t .  Venant yield condition with a constant yield strength Y. 

Using the assumption of the incompressibi l i ty  of the mater ia l  (D = const) ,  we determine the integral of 
the equation of continuity 

Op/Ot + O(pv)/Or + 2pv/r = 0: 

in the form 
. v = a ( a / r ) 2 ,  ' (2) 

where r is an Eulerian coordinate; v, radial  velocity; and ~ = da /d t ,  velocity of the pore boundary. 

Substituting the las t  express ion and the derivat ives 0v / a t  and 0v /a r  into Eu le r ' s  equation for the case of 
central  s y m m e t r y  

Moscow. Translated f rom Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 127-131, Jan-  
u a r y - F e b r u a r y ,  1983. Original ar t ic le  submitted December  23, 1981. 
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